Influence of clustering coefficient on network embedding in link prediction

نویسندگان

چکیده

Abstract Multiple network embedding algorithms have been proposed to perform the prediction of missing or future links in complex networks. However, we lack understanding how topology affects their performance, which are more likely better given topological properties network. In this paper, investigate clustering coefficient a network, i.e., probability that neighbours node also connected, algorithms’ performance link prediction, terms AUC (area under ROC curve). We evaluate classic algorithms, Matrix Factorisation, Laplacian Eigenmaps and node2vec, both synthetic networks (rewired) real-world with variable coefficient. Specifically, rewiring algorithm is applied each change while keeping key properties. find higher tends lead except for not sensitive To understand such influence coefficient, (1) explore relation between rating (probability pair link) derived from aforementioned number common pair, (2) these ability reconstruct original training (sub)network. All tested tend assign likelihood connection pairs share an intermediate high neighbours, independently Then, predicted will triangles, thus As increases, all but Factorisation could These two observations may partially explain why increasing improves performance.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Efficient Link Prediction with Node Clustering Coefficient

Predicting missing links in incomplete complex networks efficiently and accurately is still a challenging problem. The recently proposed CAR (Cannistrai-Alanis-Ravai) index shows the power of local link/triangle information in improving link-prediction accuracy. With the information of level-2 links, which are links between common-neighbors, most classical similarity indices can be improved. Ne...

متن کامل

Link Prediction Based on Graph Topology: The Predictive Value of the Generalized Clustering Coefficient

Predicting linkages among data objects is a fundamental data mining task in various application domains, including recommender systems, information retrieval, automatic Web hyperlink generation, record linkage, and communication surveillance. In many contexts link prediction is entirely based on the linkage information itself (a prominent example is the collaborative filtering recommendation). ...

متن کامل

analysis of power in the network society

اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...

15 صفحه اول

Link prediction in Foursquare network

Foursquare is an online social network and can be represented with a bipartite network of users and venues. A user-venue pair is connected if a user has checked-in at that venue. In the case of Foursquare, network analysis techniques can be used to enhance the user experience. One such technique is link prediction, which can be used to build a personalized recommendation system of venues. Recom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Network Science

سال: 2022

ISSN: ['2364-8228']

DOI: https://doi.org/10.1007/s41109-022-00471-1